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Deep Graph Unfolding for Beamforming in
MU-MIMO Interference Networks
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Abstract—We develop an efficient and near-optimal solution
for beamforming in multi-user multiple-input-multiple-output
single-hop wireless ad-hoc interference networks. Inspired by the
weighted minimum mean squared error (WMMSE) method, a
classical approach to solving this problem, and the principle of
algorithm unfolding, we present unfolded WMMSE (UWMMSE)
for MU-MIMO. This method learns a parameterized functional
transformation of key WMMSE variables using graph neural net-
works (GNNs), where the channel and interference components
of a wireless network constitute the underlying graph. These
GNNs are trained through gradient descent on a network utility
metric using multiple instances of the beamforming problem.
Comprehensive experimental analyses illustrate the superiority
of UWMMSE over the classical WMMSE and state-of-the-art
learning-based methods in terms of performance, generalizability,
and robustness.

Index Terms—Beamforming, WMMSE, algorithm unfolding,
complex-valued graph neural networks.

I. INTRODUCTION

Multi-user multi-input-multi-output (MU-MIMO) [2], [3]
systems have become increasingly useful in the context of
multi-antenna beamforming [4], [5] in both multi-cell [6] and
ad-hoc [7] wireless network scenarios. They are especially
beneficial for increasing spectral efficiency and improving
effective network capacity to meet the high quality-of-service
(QoS) requirements of modern wireless systems [8]. The task
of multi-antenna beamforming is particularly challenging for
wireless ad-hoc networks (WANETs) wherein the transceivers
may operate under strict power constraints. For example, a
mission-specific military deployment might use multiple hand-
held devices with limited battery life to constitute a tactical
WANET. Moreover, these deployments can be in various
topological, environmental, and weather conditions, giving rise
to varying fading effects and path loss. Also, the devices in
the network may suffer from interference with each other,
posing further challenges towards maintaining the required
QoS. Broadly then, the key task of beamforming in a MU-
MIMO WANET involves managing the channel and interfer-
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ence conditions in the wireless network, to obtain beams that
achieve a reasonably high value of a given QoS metric without
violating the overall power constraint.

The beamforming task can be formalized as an optimization
problem involving a network utility function – e.g., sum-
rate, mean-rate, or harmonic-rate – as the objective with
resource constraints, such as maximum available power, at
each transceiver. Optimization problems of this form have been
shown to be non-convex and NP-hard, [6], [7], [9] and there-
fore lack closed-form solutions. In the absence of methods to
generate exact solutions to the beamforming problem, multiple
classical approaches have been proposed that try to obtain
approximate solutions. For the most common case of sum-
rate maximization, the following broad categories of methods
have been commonly employed in the last few decades:
Lagrangian dual decomposition [10], [11], successive convex
approximation [12], interference pricing [13] and weighted
minimum mean squared error (WMMSE) minimization [14].

WMMSE is a popular algorithm for beamforming in both
multi-cell and ad-hoc wireless networks. It offers closed-form,
iterative update rules to solve a surrogate optimization problem
that has been shown to have identical local optima as the sum-
rate optimization problem [14]. In spite of being an effective
classical solution, it has several drawbacks. First, it is compu-
tationally complex on account of several matrix inversion and
eigendecomposition operations in each iteration. Additionally,
WMMSE has to be applied from scratch each time a new
channel condition is presented, creating a significant lag in
obtaining successive beamformers. Finally, the solution offered
by WMMSE is near-optimal at best, as it can only generate a
local optimum of the sum-rate optimization problem.

Deep learning methods have also been proposed to solve
the challenging beamforming problem. More specifically, these
neural models take a channel state information (CSI) tensor
as input and generate the corresponding beamformer for all
the transmitters in the network. A CSI tensor is a consoli-
dated structure containing channel and interference measures
between pairs of indexed users. Several neural architectures
of varying complexity – multi-layer perceptrons (MLP) [15],
[16], convolutional neural networks (CNN) [17], recurrent
neural networks (RNN) [18], and even graph neural networks
(GNN) [19], [20] – have been applied to this end. A major
advantage of these methods lies in their low feedforward com-
putational complexity. Moreover, these methods generate the
beamformers in parallel for all users in the network, making
them applicable to large-scale networks. Nevertheless, these
methods fail to generalize to channel conditions that were
unseen at training. Further, they often fail to be competitive



2

with WMMSE since they lack the domain-specific information
encoded in the structured WMMSE updates.

To address these drawbacks, a class of hybrid algorithms [1],
[21]–[24] that combine the classical update structure of
WMMSE with the fast inference capabilities of neural models
have been proposed. This is achieved through the learning
paradigm of algorithm unfolding [25] and neural augmenta-
tion [26], [27]. While both are related mechanisms, neural
augmentation uses an external learner to correct variable
updates of an iterative algorithm. On the other hand, algorithm
unfolding decouples the update steps of an iterative algorithm
to create a cascade of hybrid layers that preserve the original
update structure but introduces one or more learnable param-
eters from data. This form of domain-inspired learning has
been extremely popular and effective in several application
areas, including but not limited to non-negative matrix factor-
ization [28], iterative soft thresholding [29], semantic image
segmentation [30], clutter suppression [31], particle filter-
ing [32], symbol detection [33], link scheduling [34], energy-
aware power allocation [35], and beamforming in wireless
networks [21]–[23]. These algorithms use various neural layers
to learn one or more parameters of the iterative algorithm being
unfolded or to approximate certain computational steps in the
algorithm to improve overall performance, reduce complexity
and speed-up processing.

In this work, we propose a specific unfolding solution
of WMMSE wherein we combine two separate classes of
neural architectures with very specific advantages as detailed
in Section III-A. Firstly, we employ a ReLU MLP that enforces
a parametric functional transformation on a specific WMMSE
variable, specifically in (8). Then, we use a GNN to learn the
parameters of the MLP by leveraging the underlying graph
structure of the wireless network. While both MLP [15] and
GNN [23] are common generic architectures, the specific
form of unfolding proposed in this paper is entirely novel.
The proposed scheme relies on the universal approximation
property of MLPs to allow the unfolded variable to learn its
own functional transformation, which is necessary for better
convergence, without enforcing any prior structure to it. At
the same time, the use of GNNs to learn the transformation
parameters allows the model to incorporate the connectivity
information embedded in the wireless network that cannot
be otherwise extracted for arbitrary network topologies by a
general-purpose MLP.

A prior attempt to unfold the WMMSE algorithm to con-
struct a learnable architecture for interference management in
MU-MIMO systems was made in IAIDNN [21], which uses
learnable parameters to approximate matrix multiplication and
inversion steps in WMMSE update rules. However, the con-
nectionist components of IAIDNN fail to leverage the inherent
graph structure of the wireless networks. This shortcoming
was addressed by the more recent GCN-WMMSE [23], that
uses a combination of graph filters and GCN [36] based
graph learners to approximate certain WMMSE variables.
Nevertheless, it lacks the freedom of learning the exact nature
of the transformation on the WMMSE variables that forms the
main advantage of the proposed UWMSME.
Contribution. Following are the three main contributions of

this work:
i) We propose a hybrid algorithm, namely UWMMSE, by
unfolding WMMSE, for beamforming in multi-user multi-
input-multi-output wireless ad-hoc networks along with provi-
sions for its distributed implementation. The parameters of the
embedded functional transformation are learned via a GNN.
Further, we emphasize on obtaining a fast and lightweight
model by extensive parameter-sharing to reduce model com-
plexity.
ii) We present a theoretical analysis of the proposed model in
terms of a necessary condition that the learnable transforma-
tion must satisfy to enable effective learning; [ref. Theorem 1].
Additionally, we establish permutation equivariance of the
proposed model; [ref. Proposition 1].
iii) We provide comprehensive experimental analyses to il-
lustrate the empirical superiority of the proposed method.
Firstly, we present a performance comparison of the proposed
UWMMSE with IAIDNN [21] and GCN-WMMSE [23]. We
then demonstrate the generalizability of the proposed model to
unseen network sizes and its robustness to out-of-distribution
inputs.
Notation. [X ]ij..., [X]ij , and [x]i denote the entries of a
multi-dimensional tensor X , a matrix X, and a vector x. The
generic subindex : denotes a whole dimension, e.g., row i of
matrix X is denoted as [X]i :. E(·) is the expectation operator
while (·)H represents conjugate transpose. The all-zeros and
all-ones tensors are denoted by 0 and 1, respectively, where
the dimensions are clear from context. The z × z identity
matrix is represented by Iz . The diagonal matrix diag(X)
stores the diagonal elements of X. The zero-mean complex-
normal distribution of variance σ2 is denoted by CN (0, σ2I).

II. SYSTEM MODEL AND PROBLEM FORMULATION

Our system is a single-hop MU-MIMO WANET with M
distinct transmitter-receiver pairs. Each transmitter, having T
antennas, transmits independent data signals to a correspond-
ing receiver equipped with R antennas. Let Vi ∈ CT×d

denote the beamformer that transmitter i uses to transmit a
signal xi ∈ Cd, where E[xix

H
i ] = Id, to its assigned receiver

r(i). Assuming a linear channel model, the signal yi ∈ CR,
received at r(i) is of the form

yi = HiiVixi︸ ︷︷ ︸
desired signal

+

M∑
j=1 | j ̸=i

HijVjxj + ni︸ ︷︷ ︸
interference plus noise

, for all i, (1)

where ni ∈ CR denotes independent additive white gaus-
sian noise sampled from CN (0, σ2IR). Here, Hii ∈ CR×T

represents the communication channel between transmitter i
and its assigned receiver r(i) while Hij ∈ CR×T for all
j ̸= i represents the interference between r(i) and all other
transmitters j. Finally, the transmitted signal is estimated at
r(i) using a receiver-beamformer Ui ∈ CR×d, to obtain
x̂i = UH

i yi for all i ∈ {1, . . . ,M}.
If we define the channel state information (CSI) tensor H ∈

CM×M×R×T such that [H]ij:: = Hij and the transmitter-
beamformer tensor V ∈ CM×T×d such that [V ]i:: = Vi,
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then for every user i, assuming perfect knowledge of the CSI
matrices, its achievable rate [14] is given by

ci(V ,H) = log2 det(IR +HiiViV
H
i HH

ii (σ
2IR+∑

j ̸=i

HijVjV
H
j HH

ij )
−1). (2)

Our objective is to determine the V that maximizes the
sum-rate of the whole network,

max
V

M∑
i=1

αici(V ,H) (3)

s.t. Trace
(
ViV

H
i

)
≤ Pmax, for all i,

where αi ∈ R represents the priority of the transceiver pair
i and the maximum power available uniformly to each trans-
mitter is denoted by Pmax ∈ R. Henceforth, for simplicity, we
focus on the case where every user is given the same αi = 1
in the objective.

The optimization problem in (3) is non-convex and NP-
hard [7], [37]. A standard approach to solving this problem
is to reformulate it as a constrained weighted-minimum-
mean-square-error (WMMSE) optimization [14]. Specifically,
introducing the receiver-weight tensor Ŵ ∈ CM×d×d and
receiver-beamformer tensor U ∈ CM×R×d the problem can
be defined as

min
Ŵ,U ,V

M∑
i=1

(Trace(ŴiEi)− log detŴi), (4)

s.t. Trace
(
ViV

H
i

)
≤ Pmax, for all i,

where Ŵi = [Ŵ ]i:: is a positive semi-definite weight matrix
at receiver r(i) while Ei ∈ Cd×d is the mean squared error
between transmitted and received signals [14].

The optimization problem (4) is equivalent to (3) as shown
in [14, Thm. 3]. The variable V∗ in the global optimal
solution {Ŵ∗,U∗,V∗} of the former is the same as the
optimal transmitter-beamformer V∗ in the latter. Moreover,
the problem in (4) is tri-convex, i.e., fixing any two variables
renders the objective function convex in the third variables.
This makes (4) amenable to a block-coordinate-descent (BCD)
based solution.

In spite of the tri-convexity property that results in a
tractable closed-form solution, WMMSE performance is lim-
ited by its cumbersome iterations that are composed of ex-
pensive computational steps like matrix inversion, eigende-
composition, and bisection search (per-iteration complexity
of WMMSE scales as O(M2), where M is the number of
users) [24]. Naturally, WMMSE tends to be time-consuming
depending on the size and complexity of the wireless network,
making it particularly ineffective for fast-changing channels.
Moreover, while WMMSE can achieve a near-optimal solu-
tion, it can only solve a single instance of (3) for a given
H. In case there are multiple CSI tensors, say {Hi}ni=1, to
be processed – e.g., in a scenario wherein multiple wireless
sub-networks are being optimized over by a centralized op-
timizing agent –, WMMSE has to be repeated from scratch
independently for each of the n instances.

From a practical standpoint, it is desirable to have a mecha-
nism for fast, efficient and interpretable processing of a set of
independent CSI tensors. We propose to achieve this through
a GNN-based unfolded algorithm. More specifically, we lever-
age the near-optimal solution provided by the iterations of the
classical WMMSE method and enhance it with the expressivity
and computational efficiency of trained graph neural models.
To formally describe the wireless network graph that can be
leveraged by such models, we define its nodes as composite
structures constituted by transmitter-receiver pairs, essentially
representing the users in the wireless network. The edges
connecting the nodes represent interference and are directed
from transmitters to receivers. All nodes in the graph have
self-loops which represent the communication channel for the
users.

III. UNFOLDED-WMMSE FOR MU-MIMO

Since WMMSE is composed of computationally expensive
iterations, we reduce the computations while preserving the
update structure by truncating the number of iterations and
then compensating for the reduced iterations using data-driven
neural modules.

A. Designing the unfolded architecture

We define a K-layered parametric function Λ(·; Θ) :
CM×M×R×T → CM×T×d where Θ is a set of trainable
parameters and V(K) = Λ(H; Θ) approximates the solution
to (3) for a given CSI tensor H. The layers in Λ are
hybrid structures designed using the WMMSE updates [14],
augmented by a complex-valued MLP (CV-MLP) Φ to ac-
celerate convergence. More specifically, by setting the initial
beamformers [V(0)]i:: = V

(0)
i = vinit1T×d where vinit =√

Pmax

2Td (1 +
√
−1), for all i such that Trace(V(0)

i V
(0)H

i ) =

Pmax, we define layers k = 1, ...K as,

U
(k)
i =

(∑
j

HijV
(k−1)
j V

(k−1)H

j HH
ij+σ

2IR

)−1

HiiV
(k−1)
i (5)

Ŵ
(k)
i =

(
Id −U

(k)H

i HiiV
(k−1)
i

)−1
(6)

ξ
(k)
i = [Ψ(S, [U (k),V(k−1)]; θ)]i (7)

W
(k)
i = Φ(Ŵ

(k)
i ; ξ

(k)
i ) + Ŵ

(k)
i (8)

V̄
(k)
i =

(∑
j

HH
ijU

(k)
j W

(k)
j U

(k)H

j Hij+µIT

)−1

HH
iiU

(k)
i W

(k)
i

(9)
where each update in the sequence (5)-(9) is computed in
parallel for all nodes i.

Here, Ψ in (7) is a complex-valued GNN (CV-GNN) ar-
chitecture with a set of trainable parameters θ. The matrix
S ∈ CM×M is obtained through a learnable transformation
applied to the CSI tensor, enabling its use within the CV-
GNN Ψ. This tensor transformation is to be described in more
detail in (11). The trainable parameter µ ∈ C resembles the
Lagrange multiplier for the power constraint in the original
WMMSE formulation. The output of each hybrid layer of our
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Fig. 1. Flow diagram depicting the variable dependencies in any given intermediate layer k of the proposed K-layered UWMMSE algorithm.
Updates are shown for an arbitrary node i and are computed in parallel for all i. The yellow blocks represent the five equations in (5)-(9)
plus (10) and (11). The input to the layered structure is V

(0)
i = vinit1T×d where vinit =

√
Pmax
2Td

(1 +
√
−1) and the output transmitter-

beamformer is given by V
(K)
i for all i. Dependence on σ and {Uj ,Wj ,Vj} for all j ̸= i is implicit.

architecture is then given by V̄(k), such that [V̄(k)]i:: = V̄
(k)
i

for all i. However, V̄(k) is the raw transmitter-beamformer
that does not necessarily obey the power constraint.

To enforce the power constraint on the output of the
feedforward architecture, we introduce a non-linear activation
function β(·) in the hybrid layers of Λ(·; Θ) which saturates
the model output beyond the permissible values. For the multi-
antenna setup that we consider here, this involves constraining
V(k) identically in each layer k such that all its elements
V

(k)
i = [V(k)]i:: satisfy Trace

(
V

(k)
i V

(k)H

i

)
≤ Pmax. To

attain this, the activation β in each layer k for all i is defined
as

V
(k)
i = β(V̄

(k)
i )

=

V̄
(k)
i , if Trace

(
V̄

(k)
i V̄

(k)H

i

)
≤ Pmax,

V̄
(k)
i ·

√
Pmax

∥V̄(k)
i ∥F

, otherwise,

(10)

where || · ||F denotes the Frobenius norm. We note that
a non-linear mapping of this form was used in the PGD
based beamforming strategy of [22] as the projection step.
A schematic view of the variable dependence of the proposed
UWMMSE is given in Fig. 1.

It is essential to note here that if we ignore (7) and set
Φ(·; ξ(k)i ) = 0d×d for all i in every layer k, then (5)-(10) boil
down to the classical BCD closed-form updates of WMMSE.
However, by providing the additional flexibility to UWMMSE
of learning a set of representations ξ

(k)
i in (7) for each node i

– which are implemented as parameters of a CV-MLP in (8)
corresponding to the node – we enable faster convergence and
better performance compared with the classical WMMSE, as
illustrated in Section IV.

In building (5)-(9), one of the primary design considerations
is the choice of WMMSE variables that are to be learned.

We choose to preserve the update structures of U and V
since these are tightly related to the underlying communication
dynamics of the wireless network. Indeed, these two update
equations explicitly quantify the effects of interference on
transmitters and receivers. On the other hand, Ŵ is represen-
tative of the quality of the channel connecting a transmitter
and its corresponding receiver and plays a key role in driving
V and U to their near-optimal values. Our hypothesis is
that if Ŵ can be accelerated towards convergence through
data-driven optimization, then it will lead U and V to faster
convergence without affecting the dynamics of the wireless
network. Having thus finalized the variable to be augmented
by learning, the next design consideration is the structure of
the learnable transformation Φ. To that end, we propose the use
of a complex-valued multi-layer perceptron (CV-MLP) with a
single hidden layer of size G as Φ : Cd2 → Cd2

. On account
of its universal approximation property (UAP), an MLP is
capable of modelling any continuous and bounded function
of arbitrary complexity [38]. Therefore, without imposing any
additional inductive bias on the structure of the transformation,
the proposed method provides the necessary capabilities for
W to follow an improved update trajectory compared to that
taken by Ŵ alone.

In any given layer k, parameters ξ
(k)
i corresponding to

the CV-MLP Φ(·; ξ(k)i ), defined on node i, are learned as
node representations using a CV-GNN Ψ for all i, as shown
in Fig. 2. In addition to the complex-valued parameters ξ,
Φ also uses Cartesian non-linearites [39] on both hidden
and output layers, which are capable of handling complex-
valued outputs. More specifically, it uses the ReLU family
of activations [40] that are applied independently on the real
and imaginary components of the layer-wise outputs of Φ,
thereby transforming both magnitude and phase. In essence,
we propose a learnable transformation in each unfolded layer
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Fig. 2. Interrelationships of CV-GNN Ψ and CV-MLPs Φ for
layer k are detailed. Parameters ξ

(k)
i for the node-specific operation

Φ(·; ξ(k)i ) on WMMSE variable Ŵi are learned in parallel as node
representations for all M nodes using Ψ(S, ·; θ). WMMSE variables
{Ui,Vi} are used as node features and the learned S is the
aggregator matrix for Ψ. [COMMENT 3.3]

k at two levels. Firstly, we leverage the UAP of the CV-
MLP to frame a general functional transformation for the
receiver weights, and secondly, the parameters of each node-
specific transformation are learned using a CV-GNN. While
the standard practice is to learn the parameters of a CV-MLP
directly, we take the aforementioned route as a standalone
CV-MLP cannot generalize to arbitrary connectivity patterns
in a wireless network graph. For instance, the learnable
model must be capable of generating node representations
by leveraging the local connectivity structure of the wireless
network embedded in S. A generic GNN architecture, through
a sequence of aggregation and transformation operations [36],
[41], is able to sufficiently capture this structure. Moreover,
GNNs are typically permutation equivariant [36], thus offering
better generalization performance against variations in node
ordering. The choice of the specific GNN architecture and
the size of the trainable parameters are, however, arbitrary
and can be made depending on the nature of the problem.
In this case, to ensure computational simplicity [42], we
choose a complex-valued architecture inspired by a graph
convolutional network [36] (CV-GCN) along with Cartesian
non-linearites [39] on Ψ(·; θ), as described in (12)–(13).

Independent of the choice of architecture Ψ, we treat
the CSI tensor as a weighted adjacency structure of a di-
rected graph which is used to aggregate information from the
neighboring nodes [43]. In the multi-antenna setting that we
consider here, the link – either the channel or interference –
between any transmitter i and receiver r(j) is described by
an R × T matrix that depends on the number of transmitter
and receiver antennas. However, since CV-GCN Ψ requires
the channel between i and r(j) to be represented by a
scalar coefficient [36], we propose the use of a single-layered
1 × 1 depth-wise convolution [44] operation with shared
filter parameters to transform H to an amenable structure.
Essentially, we define an additional fully connected neural
layerΓ(·;ω) : CM×M×R×T → CM×M×1, ω ∈ CR×T which
generates

S = Γ(H;ω) (11)

such that [S]ij =
∑

p,q ωpq[H]ijpq for all i, j. S forms
the input1 to Ψ(·; θ) in (7). Indeed, this operation can be
interpreted as a learnable weighted-combination of the RT
antenna coefficients for each channel matrix Hij = [H]ij:: to
generate a scalar representation Sij = [S]ij for the channel.
The learnable weights ω are trained end-to-end with the
unfolded architecture using gradient feedback from the loss
function (14).

In addition to capturing the local connectivity structures
in graphs, GNNs are also well suited to handle features or
signals supported on the nodes of a graph [36], [45]. More
precisely, setting the aggregation matrix S ∈ CM×M and
defining a features matrix Q ∈ CM×F ′

, the GNN in (7) has the
functional form Ψ(S,Q; θ) , where Q = [U (k),V(k−1)] is a
concatenation of the current iterates for U and V . Specifically,
we consider the case where d = 1 in the rest of the paper,
resulting in F ′ = R + T . However, note that the model can
be extended to the case where d > 1 by a simple pooling
transformation on the last dimensions of U and V . Such a
formulation explicitly couples the CV-GNN with the current
state of the WMMSE variables. This is essential to ensure
that the CV-GNN output has a functional dependence on the
optimization trajectory across layers. Additionally, certain QoS
metrics like traffic rates, node priority, queue lengths etc. can
also constitute relevant node features in this case. Note that
the incorporation of the aforementioned or more node features
in our model is a straightforward task. However, a detailed
analyses of their effects on model performance is beyond the
scope of this work.

Thus, having described the aggregator matrix S and the
feature matrix Q, we now present the exact architecture of
Ψ(·; θ) in the proposed model

Ψ(S,Q; θ) = α2

(
diag(S)ZθH

21 + SZθH
22

)
, (12)

Z = α1

(
diag(S)QθH

11 + SQθH
12

)
, (13)

where θ = {θ11,θ12,θ21,θ22}, and both α1 and α2 are Carte-
sian RELU activation functions. The dimensions of θ1i, i =
1, 2 is F×F ′ and that of θ2i, i = 1, 2 is G×F ′. Note here that
we have an additional set of weights for the diagonal elements
in the formulation of Ψ(·; θ). This is essentially to emphasize
the importance of the transmission channel elements with
respect to (w.r.t) the off-diagonal interference elements in the
learnable model [24].

Finally, the trainable parameter µ is shared by all nodes and
occupies the place of the Lagrange multiplier in the original
WMMSE formulation. Its primary purpose is to incorporate
the node-wise power constraint. Intuitively, a larger µ in (9)
would result in a V̄ such that Trace(V̄V̄H) is small even
when the interference component is small. This ensures that
V̄ is less likely to deviate far from the power constraint,
even before it is enforced explicitly in (10). This allows the
model to operate more frequently in the linear region of the
activation β, leading to better numerically conditioned gradient

1In practice, we observed that a row-normalization operation on S prior to
inputting it in (7) had the effect of stabilizing training and thereby improving
the overall performance. See footnote 2 for access to implementation code.
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propagation across layers. The parameter µ is trained directly
using gradient feedback from the loss function (14).

B. Permutation Equivariance of UWMMSE

Permutation equivariance is a property by virtue of which
the performance of a GNN model remains consistent w.r.t
variations in node identities. It is of particular importance for
dynamic WANETs wherein nodes may move in and out of the
network or even operate with varying topologies. Moreover,
the channel sensors may convey their estimates in different
orders leading to a rearrangement of the rows and columns
of S. In all these cases, the GNN must be equipped to
consistently maintain the quality of its predictions across the
variations. Note that the learnable variables ω and µ are
independent of node ordering. Further, since the fundamental
learnable module Ψ(S,Q; θ) in our proposed model Λ(H; Θ)
is permutation equivariant [36], it is essential to establish
that this key property is inherited by the overall UWMMSE
architecture.

Similar to [24], [46] we now formalize the definition of per-
mutation equivariance. Let us consider a generic permutation
matrix Π ∈ {0, 1}M×M . Further, let F denote the set of all
functions f : CM×M → CM .

Definition 1 A function f ∈ F is permutation equivariant if
f(ΠSΠ⊤) = Πf(S) for all permutations Π and all matrices
S.

Essentially, a certain permutation of the node indices of a
graph, input to function f which is permutation equivariant,
applies the same permutation to the indices of the corre-
sponding node outputs without altering their values. Next, we
formally qualify the permutation equivariance of the proposed
UWMMSE model conditioned on the specific Ψ in (7).

Proposition 1 The UWMMSE model Λ(· ; Θ) is permutation
equivariant.

Proof: The proof is relegated to Appendix A.

C. Training Process

Having explained the inner workings of the proposed
UWMMSE for a given set of learnable parameters Θ =
{θ, ω, µ}, we now shift focus to the training of the architecture.
Given a fixed Θ, the model Λ(H; Θ) generates the transmitter-
beamformer corresponding to CSI H, which is used to obtain
a network sum-rate utility given as

∑M
i=1 ci(Λ(H; Θ),H);

[cf. (3) for αi = 1]. Thus, the loss can be defined as

ℓ(Θ) = −EH∼D

[
M∑
i=1

ci(Λ(H; Θ),H)

]
, (14)

where D is the channel state distribution of interest. Even
if D is known, minimizing ℓ(Θ) w.r.t Θ = {θ,ω, µ} is a
non-convex problem. However, notice that Ψ(·; θ) in (7) and
Γ(·;ω) in (11) are differentiable w.r.t θ and ω, respectively.
Thus, given a set of H drawn from D, we employ stochastic
gradient descent to minimize (14). Therefore, UWMMSE is

essentially an unsupervised learning algorithm which only
needs samples of the CSI H but does not need the true-
optimal transmitter-beamformers (labels) associated with those
channels, which can be tremendously expensive to generate.
While another possibility is to use WMMSE power allocation
as the training labels, this effectively limits the learning
capacity of the proposed UWMMSE by the near-optimality
of the WMMSE output.

Remark 1 (Application to SISO systems) While our
method is designed for beamforming in the more general
MIMO setting, it can be seamlessly employed for power
allocation in SISO wireless networks. In the SISO setting,
however, there would be no need for the neural network
in (11) since when R = T = 1 the CSI matrix can directly
be used as the generalized adjacency matrix in the GNN Ψ,
thus reducing the trainable parameters only to Θ = {θ, µ}.
Similarly, intermediate variables U

(k)
i ,W

(k)
i ,V

(k)
i are

reduced to scalars, but their update equations in (5)-(9)
remain valid and naturally present a lower computational
load. In this sense, for the SISO case, our proposed UWMMSE
resembles the unfolding scheme presented in [24]. However,
in [24], the embedded transformation Φ on W in each hybrid
layer has a fixed affine structure that lacks the UAP of the
CV-MLP. Further, [24] considers only real-valued channel
realizations which are constructed using the magnitude of
the complex-valued channels. Thus, that method completely
ignores the phase information embedded in the channel
coefficients thereby oversimplifying the problem. Also,
each layer k of the model presented in [24] has its own
independent set of GNNs Ψ(·; θ(k)) resulting in growing
complexity of that proposed solution with increasing number
of layers. More importantly, a model of this form requires the
number of layers to be fixed at both training and inference
making it inflexible at deployment. In this respect, our more
general UWMMSE framework for complex-valued MIMO
still presents advantages w.r.t existing works even if we focus
on the SISO setting.

D. UWMMSE convergence: A necessary condition

We theoretically establish the behavior of the UWMMSE
architecture with an arbitrarily large number of layers.

Theorem 1 Consider a UWMMSE architecture (5)-(11) of
infinite depth being used for beamforming to transmit a signal
xi ∈ C1 i.e., d = 1. Here, Φ(·; ξ(k)i ) in (8) are continuous
functions for all i, k. Further, consider the extreme low-noise
regime so that σ = 0 and set µ = 0. Denote using ∗ the
optimal solutions to problem (4). If V

(k)H

i V
(k)
i → P ∗

i such
that 0 < P ∗

i < Pmax for all i, uniformly as k → ∞, then it
must hold that

A−1
i

[∑
j ̸=i

HH
ijU

(k)
j (w∗

jΦ(w
(k)
i ; ξ

(k)
i )− w∗

iΦ(w
(k)
j ; ξ

(k)
j ))

U
(k)
j

H
Hij

]
C−1

i B̄i → 0 for all i as k → ∞ (15)
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where W ∈ C1×1 is represented as the scalar w ∈ C,
Ai =

∑
j H

H
ijU

(k)
j w

(k)
j U

(k)
j

H
Hij , B̄i = HH

iiU
∗
i , and C =∑

j H
H
ijU

∗
jw

∗
jU

∗
j
HHij .

Proof: The proof is relegated to Appendix B.

Theorem 1 states that if UWMMSE learns the optimal
transmitter beamformer V∗

i – where, V∗H

i V∗
i = P ∗

i –
uniformly at deeper layers, then the learned transformation
Φ(·; ξ(k)i ) must satisfy (15) asymptotically for all i. Notice that
Φ(w

(k)
i ; ξ

(k)
i ) → 0 or, more generally, Φ(w(k)

i ; ξ
(k)
i ) → δw

(k)
i

for some constant δ satisfy the requirement in (15). This is in-
tuitively pleasing, since this limiting behavior of Φ(w(k)

i ; ξ
(k)
i )

implies that deeper layers of UWMMSE would resemble the
classical iteration of WMMSE, for which we know that the
optimal beamformer is a fixed point [14]. In other words, the
proposed learnable module is sufficiently expressive to modify
the updates for the first few layers to accelerate convergence
while recovering the optimal asymptotic guarantees of the clas-
sical WMMSE algorithm at deeper unfolded layers. Finally,
note that Theorem 1 is independent of the choice of the specific
CV-GNN Ψ(·; θ) in (7). Therefore, we can safely claim that the
aforementioned result is an attribute of the hybrid model in (5)-
(10), and is independent of specific the CV-GNN architecture
chosen to learn the parameters ξ.

E. Parameter sharing for computational efficiency

The CV-GNN Ψ(·; θ) is shared by all unfolded layers,
i.e., θ does not depend on the layer index k in (7). Such
a scheme ensures that θ is trained using gradient feedback
that accumulates across layers and depends on the overall
optimization trajectory. Moreover, a formulation of this form
allows for flexibility in adding or removing unfolded layers
at deployment (after training has been completed). Another
immediate advantage is an O(K) reduction in the number
of trainable parameters with respect to the layer-dependent
alternative, making the training process less computationally
expensive and time-consuming. Further, the trainable parame-
ters ω of the tensor-transformation Γ(·;ω) in (11) are identical
for all channel elements. This is appropriate as all channel
representations must have identical functional mapping from
their respective antenna coefficients in a way that is analogous
to shared 1 × 1 convolutions of image pixels. Additionally,
having a shared filter kernel allows for an O(M2) reduction
in the number of trainable parameters. Finally, note that µ is
also tied across layers, further reducing the number of trainable
parameters.

F. Complexity analysis, scalability and distributed implemen-
tation

Per iteration computational complexity of WMMSE [14] is
O(M2TR2 +M2RT 2 +M2T 3 +M2R3) for an M -node in-
terference network with R receiver antennas and T transmitter
antennas. It can be re-written as O(M2[max{R, T}]3). Each
unfolded layer in UWMMSE inherits this complexity directly
as they perform the same update as WMMSE. Moreover, the
trained CV-GCN in each unfolded layer incurs a feedforward

complexity of O(M2F ) where the hidden layer size is F
[36]. Finally, each trained single-hidden-layered CV-MLP has
a feedforward complexity of O(MG), where the hidden
layer size is G. Hence, the total complexity of the trained
UWMMSE is given as O(M2[[max{R, T}]3 + F ] + MG).
Clearly, for a fixed set of antenna sizes {R, T} and pre-
designed hidden dimensions F and G, per layer complexity
of UWMMSE varies as O(M2) w.r.t network size M . This
is same as the per-iteration complexity of WMMSE with
fixed antenna size. Consequently, by truncating the number of
unfolded layers K in UWMMSE as compared to the number
of iterations in WMMSE, the inference time is significantly
reduced. This will be empirically validated in Section IV-C.

In addition to the computational complexity, it is also
important to note the size of the model given by the number
of its trainable parameters. The proposed architecture has very
few trainable parameters making it easy to train, and likely
to generalize as illustrated in Section IV. The number of
parameters θ in the 2-layered CV-GCN Ψ is O(F [F ′ + G]).
Further, the linear layer Γ has O(RT ) trainable parameters
and µ has a size of just 1. Thus, the total number of trainable
parameters of UWMMSE is O(RT + F [F ′ + G]), and is
independent of the number of nodes M . As a result, the
same model can be employed to process wireless networks of
varying size with the assumption that the underlying channel
model is identical.

While it is necessary to train the proposed UWMMSE in a
centralized manner under the assumption that the centralized
trainer has access to the full CSI tensor, the trained UWMMSE
can support a distributed deployment with only local informa-
tion available at each node. This is mainly possible given the
fact that power allocation at a given node i depends only on the
row slice Hr(i)::: and the column slice H:i:: of the CSI tensor.
Nevertheless, to achieve a fully distributed deployment, three
vital assumptions are necessary, two of which are inherited
directly from the distributed version of WMMSE [14]. Firstly,
for all receivers r(j) where j = 1 . . .M , the local channel
state estimates Hji should be available to each transmitter
i. Secondly, a mechanism is required to facilitate information
feedback from receivers to all transmitters. These assumptions
essentially enable the transmitters to compute V

(k)
i after re-

ceiving the corresponding U
(k)
i and W

(k)
i from each receiver

r(i) in all unfolded layers k. Finally, a copy of the full
set of trained parameters Θ = {θ, ω, µ} must be available
to each node. Note that, while we can achieve distributed
deployment in this manner, the feedback links will add to
the communication overhead and therefore the inference time
would be higher than that of the centralized version.

IV. NUMERICAL EXPERIMENTS

In this section, we present comprehensive numerical ex-
periments to demonstrate the performance of the proposed
UWMMSE model in allocating power to complex-valued MU-
MIMO WANETs operating under various fading conditions
and topologies.2 A detailed description of the datasets is

2We have released our code for this work at
https://github.com/ArCho48/Unrolled-WMMSE-for-MU-MIMO.

https://github.com/ArCho48/Unrolled-WMMSE-for-MU-MIMO
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provided in Section IV-A while the model architecture, hyper-
parameters and system setup are presented in Section IV-B.
In Section IV-C, we compare performance of our model with
WMMSE and its truncated version, in terms of achieved sum-
rate and inference time. In Section IV-D and Section IV-E,
we evaluate the generalization performance of our model
across different operating conditions in training and inference.
Further, in Section IV-G, we investigate the robustness of our
proposed model against norm-bounded distortions in the input
CSI tensor. Finally, in Section IV-F we present an illustration
of the convergence behavior of our model.

A. Datasets

We use randomly generated geometric channel realizations
to evaluate the model performance. A geometric channel
model has a composite structure with path loss and fading
components. To simulate that, we construct a 2-D geomet-
ric graph with M randomly sampled transceiver pairs. All
transmitters and receivers are dropped uniformly at random at
location ti ∈ [0,

√
M ]2 and ri ∈ [0,

√
M ]2. Path loss between

transmitter i and receiver r(j) is denoted by ℓij with path-loss
exponent set at 3. We set the number of antennas as R = 3
and T = 5 for all the experiments. For simplicity, we assume
that a scalar complex-valued signal is being transmitted, i.e.,
d = 1.

Similar to [1], [15], [16], [47], we choose the following
fading channel models:
Rayleigh: For each channel matrix Hij corresponding to the
transceiver pair ij, we generate Rayleigh channel coefficients
[Hij ]rt independently for all antenna pairs (r, t) as the real and
imaginary components sampled independently from a standard
normal distribution. Incorporating the path loss component,
elements of the channel matrix [Hij ]rt are given by

[Hij ]rt =
1√

2(1 + ℓ3ij)
(a+

√
−1b) for all r, t.

where, a ∼ N (0, 1), b ∼ N (0, 1)

Rician: For each channel matrix Hij corresponding to the
transceiver pair ij, we generate Rician channel coefficients
[Hij ]rt with 20 dB K-factor [48] independently for all antenna
pairs (r, t) as the real and imaginary components sampled
independently from a normal distribution. Incorporating the
path loss component, elements of the channel matrix [Hij ]rt
are given by

[Hij ]rt =
1√

2(1 + ℓ3ij)
(a+

√
−1b) for all r, t.

where, a ∼ N (µric, σric), b ∼ N (µric, σric)

where µric =
√

k
(k+1) and σric =

√
1

(k+1) with k = 100.

B. Model architecture

Our proposed feedforward UWMMSE architecture is com-
posed of 3 unfolded-WMMSE layers with a 2-layered CV-
GCN modeling the function Ψ in (7). Note that Ψ is shared
by all unfolded layers k. We set the hidden layer dimension
of CV-GCN to F = 32 and that of CV-MLP to G = 16.

The model consists of 3302 real-valued trainable parame-
ters. NovoGrad optimizer is employed for training across a
maximum of 15000 iterations on a batch of 64 randomly
sampled channel realizations with early stopping. The initial
learning rate is set to 1 × 10−2. An interesting observation
was that while 3 unfolded-layers offered the best performance
trade-off in terms of sum-rate and time at inference, the
best training performance was achieved with just 1 unfolded
layer. Recalling that our model is flexible insofar as to have
different numbers of unfolded-layers at training and inference
on account of parameter-sharing, we established a model
setup wherein UWMMSE is trained with a single layer and
then 2 more layers are appended at inference, which share
the learned components. Experimental results presented in
this section demonstrate the effectiveness of this setup. At
inference, we average the achieved sum-rate over 10000 chan-
nel realizations for all experiments. Our model, on account
of being lightweight, is perfectly suited for both CPU and
GPU operating environments. Nevertheless, for uniformity
and reproducibility, all experimental results for this paper are
generated on an Nvidia GeForce RTX 2080 GPU.

C. Performance Comparison

The sum-rate performance of the proposed UWMMSE is
compared with that of existing baselines including classical
WMMSE and state-of-the-art connectionist methods. For these
comparisons, we had to choose an operating point between
two regimes based on additive receiver noise. Firstly, in the
low-noise regime, the receiver noise power is set at −90 dB
or less. This is a more challenging scenario since the effects
of interference tend to dominate that of receiver noise and
therefore the sum-capacity achieved depends largely on the
precise beamforming at each transmitter. On the other hand,
the high-noise regime (noise power is set at 0 dB), offers
a simplified setting wherein the achievable sum-capacity is
innately low on account of high noise and therefore the exact
beamforming at the transmitters is not critically important. In
fact, our observation is that in this regime, the transmitters
often exhibit binary characteristics, either transmitting at full
power or not transmitting at all. For our experiments, we
choose to operate in the low-noise regime, specifically at
σ2 = −114 dB since it allows us to evaluate the full potential
of the proposed model.

We now present a list of methods that we chose for per-
formance comparison. All these methods address the common
problem of beamforming in CV MU-MIMO WANETs.

1) WMMSE [14] is the classical baseline for our experi-
ments as our method is an unfolded extension of it and
is potentially an improvement over it. The maximum
iterations per sample for WMMSE is set to 100.

2) Truncated WMMSE (Tr-WMMSE) offers an empirical
lower bound for UWMMSE in terms of the performance
that can be achieved by equal number of WMMSE
iterations as the number of unfolded layers without any
learning. Tr-WMMSE is allowed 3 iterations to match
the number of UWMMSE layers.
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(a) (b) (c)
Fig. 3. Comparison of the achieved sum-rate by the proposed UWMMSE with full WMMSE [14], a truncated version of it, IAIDNN [21],
and GCN-WMMSE [23]. (a) Sum-rate histogram for ∼ 10000 Rayleigh CSI samples in the low-noise regime (σ2 = −114 dB). UWMMSE
achieves significantly better performance than WMMSE while requiring equal number of iterations as the truncated version of it. (b) Box
plots corresponding to histograms in (a), with additional comparisons with IAIDNN and GCN-WMMSE on identical CSIs. (c) Counterpart
of (b) for Rician channels (κ = 20 dB).

3) IAIDNN [21] is a deep-unfolding framework to solve the
sum-rate maximization problem for precoding design in
MU-MIMO systems.

4) GCN-WMMSE [23] is a graph based unfolding frame-
work for transceiver design in multicell MU-MIMO in-
terference channels with local channel state information.

It is important to note here that both IAIDNN [21] and
GCN-WMMSE [23] are unfolded extensions3 of WMMSE and
therefore belong to a very specific class of hybrid algorithms
that the proposed UWMMSE is also a part of. The main dif-
ference of UWMMSE w.r.t these methods lies in the structure
of the respective unfolded components and the choice of the
corresponding learnable modules (see Section III).

The comparisons are shown in Fig 3. At any given in-
stant, the channel conditions are randomly sampled from a
fading distribution. As a result, the sum-rate utility, which
is conditioned on CSI, can vary significantly based on the
exact samples used for evaluating different beamforming al-
gorithms. A particular instance of CSI can be easy or hard to
solve depending on the interference conditions and how these
conditions contrast with the channel intensities. However, the
general performance over a large set of test samples should
reveal the superiority of a particular beamforming algorithm
over others. This is illustrated in form of a histogram of
achieved sum-rate by the full test set in a Rayleigh channel
setting; see Fig 3(a). The observed empirical distribution of
sum-rate values over multiple channel realizations clearly
reveals that UWMMSE significantly outperforms WMMSE
for most realizations, with only a small overlap. Gain in
full WMMSE performance compared to Tr-WMMSE, while
expected due to difference in number of iterations, is not
significant. Intuitively, this is an indication that the WMMSE
iterates approach a local optimum of the sum-rate objective
fairly quickly and then simply converge to it over the rest of
the gradient steps. On the other hand, the UWMMSE iterates,
supported by the embedded learnable components, take data-
driven modified gradient steps to converge to a better local

3For experimenting with IAIDNN and GCN-WMMSE, we
have used the implementations by Schynol et al. found at
https://github.com/lsky96/gcnwmmse.git.

Fig. 4. Comparison of sum-rate performance achieved by WMMSE
and UWMMSE over a range of SINRs, averaged over ∼ 10000
Rayleigh CSI samples.[COMMENT 3.5]

optimum within fewer steps.
Having established the superiority of UWMMSE w.r.t

WMMSE, we now extend our investigation to the class
of hybrid algorithms specifically under a Rayleigh channel
setting; see Fig 3(b). IAIDNN [21] falls short of WMMSE
by a significant margin with an average sum-rate of 32.17.
While its current formulation works well for fading channels
without the path loss component (essentially lacking the graph
structure) and under a simplified high-noise setting, it is not
equipped to deal with the full geometric channel model in
a challenging low-noise scenario. Clearly, the use of graph
information in GCN-WMMSE [23] provides a big boost in
its performance (average sum-rate of 55.19) w.r.t IAIDNN.
Nevertheless, it also falls short of WMMSE, albeit marginally,
in this particular setting. Clearly, the proposed UWMMSE is
the superior algorithm among all the compared approaches.
This superiority can be largely attributed to the two-step
learning scheme wherein the first step leverages the underlying
graph structure in the geometric wireless network to learn
a set of parameters and the second step enforces a general
functional transformation on a key WMMSE variable based
on these learnt parameters (ref. Section III-A), thus facilitating
a better convergence than the other approaches.

We now shift focus to the Rician channel setting. Our
objective in choosing the two different channel models for

https://github.com/lsky96/gcnwmmse.git
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comparison is to demonstrate that the superiority of our
method and the general performance trend for the various
beamforming algorithms are not dependent on a particular
channel type; see Fig 3(c). While we observe a similar
performance trend wherein the proposed UWMMSE beats
all other methods comfortably, GCN-WMMSE [23] surpasses
WMMSE marginally in this case and also closes the gap
slightly with UWMMSE. IAIDNN [21] still lags behind all
the methods but does marginally better than its Rayleigh
counterpart.

TABLE I
TIME COMPARISONS OF ALL METHODS

Algorithm Training Test
time (min) time (sec)

WMMSE [14] - 1.305
Tr-WMMSE - 0.047
IAIDNN [15] ∼ 10 0.64
GCN-WMMSE [21] ∼ 21 1.365
UWMMSE ∼ 35 0.054

While achieving a high sum-rate is the primary objective of
the hybrid algorithms, it is also important for these methods
to offer rapid inference as the beamforming process has to
be capable of operating on the same time scale as potentially
quickly varying channels. We therefore consider it essential to
compare the time complexity of the aforementioned algorithms
to generate the beamforming output for any given CSI input.
A comparison of computation time is provided in Table I. Per
sample inference time of UWMMSE is 54 ms, which is 24X
lower than that of WMMSE which clocks around 1.30 sec.
Inference time of UWMMSE is predictably similar to that of
Tr-WMMSE (47 ms per sample) since they have the same
number of iterations, however, the learnable components of
UWMMSE add slightly to its time complexity. IAIDNN [21]
has an inference time that is an order-of-magnitude higher than
UWMMSE whereas GCN-WMMSE [23] takes the longest
(1.36 sec per sample) inference time among all the methods.
Moreover, neither IAIDNN nor GCN-WMMSE achieve the
same average performance as the proposed UWMMSE. Fur-
ther, unlike the classical approach all the hybrid methods have
a training component. [ref. Table I]. Clearly, the training for
IAIDNN is the fastest while the proposed UWMMSE takes the
longest to train among all the hybrid methods. However, since
training is one-time and is typically done prior to deployment,
this is generally not a major concern for most applications.
We observe similar trends in both Rayleigh and Rician fading
cases but we only present the Rayleigh case in Table I, for the
sake of brevity.

Finally, we want to evaluate the efficacy of UWMMSE over
multiple signal-to-interference-plus-noise ratio (SINR) values.
Since noise and interference conditions can vary dynamically,
it is essential for the model to be able to maintain a consistent
performance across such variations. To that end, we separate
the inference data from the Rayleigh channel scenario into
multiple SINR bins (0−5 dB, 5−10 dB, . . . , 35−40 dB) based
on the WMMSE power allocation. For all CSI samples in each
of these bins, the mean sum-rates achieved by UWMMSE
and WMMSE are compared in Fig 4. Clearly, UWMMSE

achieves significantly higher performance over WMMSE in all
bins except very high and very low SINR values, where the
achieved mean sum-rate is similar for both. This is expected
since at high and low SINR, the power allocation task is either
too easy or too challenging for both methods. However, in the
more realistic mid ranges (5 − 35 dB), UWMMSE is able to
beat WMMSE consistently.[COMMENT 3.5]

D. Generalization across network sizes and fading types

Wireless networks are typically dynamic in terms of size,
fading conditions, and receiver noise power, among multiple
other aspects that evolve through time. Thus, we are interested
in models that work for multiple network conditions. To quan-
tify this aspect, we evaluate the model on its generalization
performance under a set of operating conditions at inference
that are different from those at training. Specifically, we
perform this evaluation w.r.t network size and fading channel
type as shown in Fig 5. We choose network size as one of
the dynamic quantities since it is very common for a wireless
ad-hoc network to have new nodes added to it or existing
nodes removed from it. The choice of fading channel type
as the second dynamic setting is motivated by the fact that
an ad-hoc network can group and re-group under various
geographical (rural, urban, suburban) and climatic conditions
such that there may or may not be dominant line-of-sight paths
among transmitters and corresponding receivers.

Firstly, as a means of evaluating the interpolation behavior
of UWMMSE across network sizes, we train a single model
on even-valued sizes between {10, . . . , 50} and then test it on
all sizes between 10 and 50 for a Rayleigh channel setting.
As shown in Fig 5(a), the model performs significantly better
– more than 1.2-times the corresponding WMMSE sum-rate
– for all sizes including the odd-valued sizes that were not
available during training. The observed drop in the model
performance with increase in network size is expected since
a larger network offers more interference at each transceiver
and essentially poses a more challenging problem for the
beamforming algorithm. Next, to evaluate the extrapolation
behavior of UWMMSE, we test the trained model from the
previous experiment on all sizes between 55 and 100. As
shown in Fig 5(b), the model performs reasonably well –
more than 1.05-times the corresponding WMMSE sum-rate
– for all unseen sizes. Similar to the interpolation setting,
a steady decrease in mean performance is observed in the
extrapolation setting mainly due to increase in network size
and the departure from the training setting. However, the fact
that the UWMMSE performance for all sizes between 10
and 100 is strictly above WMMSE irrespective of training
conditions, demonstrates the generalizability of our model to
variations in network size.

Fig 5(c) illustrates the generalization behavior of
UWMMSE to variation in fading conditions. A UWWMSE
model trained on Rayleigh setting (UWMMSE ray), identical
to the interpolation experiment, is employed for inference
on a Rician setting. While UWMMSE ray fails to beat
UWMMSE ric (which is specifically trained on a Rician
channel setting), it still manages to comfortably beat the



11

(a) (b) (c)
Fig. 5. Generalization performance of UWMMSE – normalized w.r.t the corresponding WMMSE performance – across multiple network
sizes and fading models. (a) Normalized mean sum-rate achieved by UWMMSE on Rayleigh channel realizations with test sizes varying
in the range {10, 11, . . . , 50}, while training sizes were in the range {10, 12, 14, . . . , 50}. The normalized mean sum-rate achieved by
Tr-WMMSE for the same range of network sizes is shown for comparison. (b) Counterpart of (a) but for test sizes varying in the range
{55, . . . , 100}, with training sizes still in the range {10, 12, 14, . . . , 50}. (c) Counterpart of (a) but for Rician channel realizations with
an additional plot of normalized sum-rate achieved by a UWMMSE model trained on Rayleigh channel realizations and tested on Rician
channel realizations.

corresponding WMMSE performance for all network sizes.
Clearly, the proposed UWMMSE, when trained under a fixed
fading condition, can reasonably generalize to different fading
channel settings without any re-training on other fading
conditions.

E. Generalization across spatial distributions

So far, we have considered a WANET setting, wherein the
transceivers are dropped uniformly at random in a square
region of area M as discussed in Section IV-A. This choice
of distribution is arbitrary and was made for the sake of sim-
plicity. Different real-world situations may yield other spatial
distributions depending on topological conditions or mission-
specific requirements. For example, an Army unit might be
deployed in a manner such that there are more soldiers sta-
tioned at a particular point-of-interest and their concentration
reduces with distance from that point. Such a deployment can
be modelled more appropriately as a Gaussian distribution. It
is important that the proposed UWMMSE is able to handle
such CSI tensors at inference, even when trained under a
different distribution. To that end, we take a UWMMSE
model trained on uniformly distributed transceivers and eval-
uate its generalization performance on Gaussian distributed
transceivers with a controlled standard deviation parameter.
As shown in Figure 6(a), the performance of UWMMSE on
the Gaussian test set is equivalent to the uniform test set
only when the standard deviation is large enough at which
point the Gaussian distribution is wide enough over the square
region to essentially emulate a uniform distribution. There
is a clear degradation in performance with decreasing stan-
dard deviations as the nodes come closer together generating
stronger interference. Nevertheless, it is important to note
that the mean sum-rates, normalized w.r.t the corresponding
WMMSE sum-rates, are always above 1.0. Hence, although
UWMMSE achieves best possible performance when it sees
identical distributions in training and inference, it generalizes
reasonably well as compared to WMMSE even for unseen
distributions at inference.

F. Robustness

We analyze the robustness of the proposed UWMMSE
model to distortion in channel state information. An analysis
of this form is essential since, under real-world scenarios,
the channel estimation process is imperfect [49]. Yet, it is
imperative that the beamforming algorithms are robust to the
extent that they are able to maintain a steady performance
in spite of these variations. To that end, we add random
Gaussian noise of bounded variance to the channel coefficients
in the CSI tensor. The sum-rate, however, is computed for the
undistorted CSI tensor H. For example, in the case of the
Rayleigh channel model, the distorted elements [H̄ij ]rt of the
input tensor H̄ are given by

[H̄ij ]rt = [Hij ]rt + (c+
√
−1d) for all r, t.

where, c ∼ N (0, σr), d ∼ N (0, σr)

where, σr = 0.001. The elements which are distorted are
chosen uniformly at random from all the entries of the tensor.
Fig 6(b) shows that under a controlled rate of distortion that
varies between 0.0 (no element of H is distorted) to 1.0 (all
elements of H are distorted), the proposed UWMMSE main-
tains a sum-rate that is better than WMMSE-with-undistorted-
input until about 20% of the channel coefficients are distorted.
Although the performance dips beyond the 20% mark, it is
still better than WMMSE-with-distorted-input until about the
60% mark, beyond which the performance of both algorithms
applied to the distorted CSI are similar. Clearly, UWMMSE is
reasonably robust insofar as achieving a superior sum-rate than
the classical method in an event of distorted channel estimation
until about only 40% of the coefficients are estimated correctly.
This degree of robustness, albeit empirical, is inherent to the
model since no robustness criterion is enforced at training.
We strongly expect that methods like adversarial training and
noise-regularized training will further enhance the robustness
of the proposed model. That analysis, however, is beyond the
scope of this work.
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(a) (b) (c)
Fig. 6. Performance generalization across spatial distributions, convergence, and robustness results. (a) Variation in normalized sum-rate
utility achieved by the UWMMSE model trained on uniformly sampled transceiver locations and tested on transceiver locations sampled from
Gaussian distributions with varying standard deviations. (b) Variation in normalized mean sum-rate achieved by UWMMSE and WMMSE
under controlled distortion in the input CSI tensor H as compared to the ideal performance achieved on the same CSI tensors without
distortion. (c) Matching scores between the variables W and V for the proposed UWMMSE in layers 1,2,and 3 and the classical WMMSE
in iterations 1,2,3,50,and 100.

G. Convergence

In this section, we present an empirical convergence analysis
of the proposed UWMMSE model and also provide a compar-
ison with the WMMSE algorithm under the same framework.
Our analysis focuses on the variation of the transformed
receiver-weight W and its similarity with the final transmitter
beamformer output V . Essentially, it is W that represents
the channel conditions between a given transceiver pair. In-
tuitively, transceivers with better channel conditions should
transmit with high power as opposed to transceivers with poor
channel conditions, which must hold transmission to conserve
power. Therefore, W plays a key role in driving V to its near-
optimal value. Also, W is a function of V and depends on it
to measure the quality of the channel. To emphasize this inter-
dependence which leads to convergence of the UWMMSE
model, we extract W(k)

i and V
(k)
i for all nodes i ∈ 1, . . . ,M

in all layers k ∈ 1, 2, 3 for all 10000 test samples. Typically,
a large value of ∥Wi∥F represents a strong channel suitable
for transmission and must be allocated greater power. On the
contrary, a smaller value signifies a poor channel that should
not transmit. To validate this hypothesis, we threshold Wi

for all i such that all transmitters with ∥Wi∥F > 1.0 are
assigned a scalar 1.0 and all transmitters with ∥Wi∥F ≤ 1.0
are assigned 0.0. Further, we compute the real-valued final
power allocation vector p for the entire network as ∥Vi∥F for
all i and threshold it to yield a binary power allocation vector.
Analogous to binary classification, we treat p as ground-truth
and (the thresholded) w as the prediction and then compute
the F1-score between the two vectors to match them. The
choice of the metric is to ensure that both false-positives and
false-negatives have an impact on the score. These scores are
then averaged across all test samples to find a global trend
in matching the two variables. Similarly, a matching score
between Ŵ ,V is computed for the case of the WMMSE
algorithm. Since WMMSE takes 100 iterations to offer best
performance, we compute the scores for iterations 1,2, and 3
for a direct comparison with UWMMSE and also iterations 50
and 100 for a more complete comparison. It is important to
note here that we use the respective final power allocations

for UWMMSE and WMMSE for this experiment. This is
because we have already established in Section IV-C that
UWMMSE reaches a better convergence than WMMSE in
terms of sum-rate and therefore the two algorithms are unlikely
to reach an identical final p. The main objective of this
experiment is, however, to evaluate how fast the proposed
UWMMSE achieves its respective convergence as compared to
the classical WMMSE. The comparison is shown in Fig 6(c).
Clearly, UWMMSE offers a better match between W and
V in all 3 layers as compared to the first 3 iterations of
WMMSE. Notwithstanding the error bars, we observe that the
proposed UWMMSE learns the near-optimal W much earlier
as compared to WMMSE.

V. CONCLUSION

We presented UWMMSE, a hybrid algorithm for fast, effi-
cient, and near-optimal beamforming in complex-valued MU-
MIMO WANETs by unfolding the iterations of the classical
WMMSE algorithm using complex-valued neural models. The
main contribution of this work lies in forming a synergistic
combination of an MLP-based parametric functional trans-
formation with a GNN-based learner appropriate for tackling
wireless network graphs. Superiority of this method is estab-
lished through extensive experiments. Further, the proposed
model is lightweight on account of extensive parameter sharing
and also easy to implement in a distributed fashion. The per-
layer computational complexity of UWMMSE matches that of
the per-iteration complexity of WMMSE. However, the main
gain lies in the reduction of number of layers in UWMMSE as
compared to the number of iterations necessary for WMMSE
to converge. Future work will involve considering time-varying
channels with long-term constraints on the beamforming se-
lection such as fairness or battery constraints. Evaluating the
model performance on real-world datasets is also an important
next step.

APPENDIX A
PROOF OF PROPOSITION I

Proof : Let V(k) = Λk(H,V(k−1); Θ) denote the output
of the UWMMSE architecture in (5)-(10) at layer k. Also,
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H̃ = ΠHΠ⊤ denotes an arbitrary permuted version of the
channel tensor with the permutations being enforced only on
the first two dimensions of the tensor. and Ṽ(k−1) = ΠV(k−1)

represents input V(k−1) to the kth layer, with the permu-
tations being enforced on the first dimension of the tensor
only. Further, S̃ = ΠSΠ⊤ is a permuted version of the
transformed CSI matrix, and Q̃ = ΠQ is the equivalent
permutation of the node feature vectors. Firstly, we want to
prove that Λk(H̃, Ṽ(k−1); Θ) = ΠV(k). We know that ξ̃(k) =
Ψ(S̃, Q̃; θ) = Πξ(k) since Ψ is permutation equivariant. Let
node i be assigned a new index π(i) after permutation Π.
Then by setting H̃ij = [H̃]ij::, it follows from (5) that

Ũ
(k)
i =

(∑
j ̸=i

H̃ijṼ
(k−1)
j Ṽ

(k−1)H

j H̃H
ij+σ2IR

)−1

H̃iiṼ
(k−1)
i

=

(∑
j ̸=i

Hπ(i)π(j)V
(k−1)
π(j) V

(k−1)H

π(j) HH
π(i)π(j)+σ2IR

)−1

Hπ(i)π(i)V
(k−1)
π(i) = U

(k)
π(i),

which, in tensor form, results in Ũ (k) = ΠU (k). Likewise,
from (6) and (9) it can be derived that W̃(k) = ΠW(k) and
Ṽ(k) = Λk(H̃, Ṽ(k−1); Θ) = ΠV(k), as required.

Leveraging these identities, we now want to show that
Λ(· ;Θ) is equivariant. Specifically, for the special case of
K = 1, it can be obtained from the definition of Λ(·; Θ), that

Λ(H̃; Θ) = Λ1(H̃,V(0); Θ) = Λ1(H̃,ΠV(0); Θ)

= ΠΛ1(H,V(0); Θ) = ΠΛ(H; Θ),

the fact that V(0) is a constant tensor gives rise to the second
equality while the third equality is obtained as a special case
of the previous identity for k = 1. This completes the proof
for permutation equivariance of a single-layered UWMMSE.
For UWMMSE with K > 1, permutation equivariance can be
established via a simple induction argument omitted here.

APPENDIX B
PROOF OF THEOREM 1

Proof : This proof is inspired by that of the convergence
result presented in [24], and the theoretical linear convergence
results of unfolded ISTA [29], as presented in [50]. We assume
that Trace

(
V

(k)
i V

(k)H

i

)
→ P ∗

i = Trace
(
V∗

iV
∗H

i

)
for all i

uniformly. This means that, for all η > 0, there exists a layer
index K1 such that for all k > K1, V(k−1) = V∗ + EV and
V(k) = V∗ + E ′

V where ∥[EV ]i∥F < η and ∥[E ′
V ]i∥F < η

for all i. Following notations identical to that of the proof
of Proposition 1 in Appendix A, we have that V(k) =
Λk(H,V(k−1); Θ). It follows from uniform convergence that,

V∗ + E ′
V = V(k) = Λk(H,V∗ + EV ; Θ). (16)

Therefore, we need to obtain an expression gk(H,V∗+EV ; Θ)
such that Λk(H,V∗ + EV ; Θ) = V∗ + gk(H,V∗ + EV ; Θ),
that can be replaced in (16) to obtain

E ′
V = gk(H,V∗ + EV ; Θ). (17)

The fact that (17) holds for a positive η → 0, implies that as
k → ∞, gk(H,V∗ + EV ; Θ) → 0. In what follows, we en-
deavour to determine the explicit form of gk(H,V∗+EV ; Θ)
and thereby demonstrate (15).

First, focusing on an arbitrary i, we replace V
(k−1)
i by V∗

i +
EVi in (9), where EVi = [EV ]i to obtain

U
(k)
i =

(∑
j

Hij(V
∗
j + EVj

)(V∗
j + EVj

)
H
HH

ij+σ2IR

)−1

Hii(V
∗
i + EVi)

H
.

Since we operate in the low-noise regime [24], the noise
term in the inverse can be neglected in comparison to the
interference term to yield

U
(k)
i =A−1

i Bi

where, we define two dummy variables Ai =
∑

j Hij(V
∗
j +

EVj
)(V∗

j + EVj
)
H
HH

ij , and Bi = Hii(V
∗
i + EVi

)
H . Defining

a third dummy variable Ci =
∑

j HijV
∗
jV

∗
j
HHH

ij we have,

U
(k)
i =A−1

i CiC
−1
i Bi

= C−1
i Bi +A−1

i (Ci −Ai)C
−1
i Bi

= C−1
i B̂i +C−1

i HiiEH
Vi

−A−1
i

[∑
j

Hij(V
∗
jEH

Vj

+ EVj
V∗

j
H + EVj

EH
Vj
)HH

ij

]
C−1

i Bi.

(where, B̂i = HiiV
∗
i
H )

Clearly, the first term represents U∗
i . All remaining terms that

depend on EV , constitute EU such that ||EUi
||F → 0 as η → 0

for all i. Thus, U(k)
i takes the form,

U
(k)
i = U∗

i + EUi , for all i. (18)

We then consider (6), where we replace U(k) and V(k−1), by
U∗ + EU and V∗ + EV , respectively. Similar to the procedure
followed in (18), and leveraging the continuity of Φ(·; ξ(k)i ),
we have

w
(k)
i = w∗

i +Φ(w
(k)
i ; ξ

(k)
i ) + ϵwi , for all i (19)

where |ϵwi | → 0 as η → 0 for all i. Next, we repeat the pro-
cedure for (9). To that end, we redefine the dummy variables
Ai,Bi and Ci as, Ai =

∑
j H

H
ijU

(k)
j w

(k)
j U

(k)
j

H
Hij , Bi =

HH
iiU

(k)
i w

(k)
i , and Ci =

∑
j H

H
ijU

∗
jw

∗
jU

∗
j
HHij . Further, we

replace U
(k)
i and w

(k)
i , by their respective forms obtained

in (18) and (19). Clearly, for k → ∞, the non-linearity β(·)
is no longer significant since Trace

(
V̄

(k)
i V̄

(k)H

i

)
→ P ∗

i and
0 < P ∗

i < Pmax for all i. Therefore, from (9)-(10) we get
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that,

V
(k)
i = C−1

i Bi +A−1
i (Ci −Ai)C

−1
i Bi

= C−1
i B̂i + EVi

+A−1
i

[
AiΦ(w

(k)
i ; ξ

(k)
i )

]
C−1

i B̄i

+A−1
i

[
(Ci −Ai)(w

∗
i +Φ(w

(k)
i ; ξ

(k)
i ))

]
C−1

i B̄i,

(where, B̂i = HH
iiU

∗
iw

∗
i and B̄i = HH

iiU
∗
i )

= C−1
i B̂i + EVi +A−1

i

[∑
j ̸=i

HH
ijU

(k)
j (w∗

jΦ(w
(k)
i ; ξ

(k)
i )

− w∗
iΦ(w

(k)
j ; ξ

(k)
j ))U

(k)
j

H
Hij

]
C−1

i B̄i for all i

(20)

where ||EVi
||F → 0 as η → 0 for all i. Since, (U∗,W∗,V∗)

form a fixed point of the WMMSE updates [14], V∗
i is given

by the first term in the r.h.s of (20) for all i. Therefore, the
last two terms in the r.h.s of (20) constitute, element-wise, the
function gk(H,V∗ + E; Θ). Further, since ||EVi ||F → 0 as
η → 0 (equivalently, as k → ∞), as k goes to infinity, the last
term in (20) must go to 0, thus completing the proof.
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